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Abstract. Mammogram malignancy classification with only image-level
annotations is challenging due to a lack of lesion annotations. If we can
generate the healthy version of the diseased data, we can easily explore
the lesion features. An intuitive idea of such generation is to use existing
Cycle-GAN based methods. They achieve the healthy generation regard-
ing healthy images as reference domain, while maintaining the original
content by cycle consistency mechanism. However, healthy mammogram
patterns are diverse which may lead to uncertain generations. Moreover,
the back translation from healthy to the original remains an ill-posed
problem due to lack of lesion information. To address these problems,
we propose a novel model called bilateral residual generating adversarial
network(BR-GAN). We use the Cycle-GAN as a basic framework while
regarding the contralateral as generation reference based on the bilateral
symmetry prior. To address the ill-posed back translation problem, we
propose a residual-preserved mechanism to try to preserve the lesion fea-
tures from the original features. The generated features and the original
features are aggregated for further classification. BR-GAN outperforms
current state-of-the-art methods on INBreast and in-house datasets.

Keywords: Mammogram classification · Domain knowledge · Cycle
consistency mechanism

1 Introduction

Breast cancer is the most commonly diagnosed cancer among women [15]. Mam-
mography is a common examination for early breast cancer diagnosis. The
mammogram malignancy classification is crucial. Most existing methods require
extra annotations, such as bounding boxes for detection [1,8,12,16,17] and mask
ground truth for segmentation [7]. However, the above extra annotations require
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Fig. 1. Cases to show that how the unhealthy breasts look asymmetrical, while healthy
breasts are roughly symmetrical

expert domain knowledge, which is costly to obtain. Therefore, mammogram
malignancy classification with the only image-level labels as the supervision is
of vital significance clinically.

Exploring lesion features from a full mammogram image is the key to solve
the problem. However, lesion exploration is very challenging since the lesions can
be expressed as diverse appearances and the high-intensity breast tissues may
partially obscure the lesions. Previous researches mainly use attention mecha-
nism for abnormal exploration, e.g., Zhu et al. [20] and Fukui et al. [2]. However,
the lack of using mammogram domain knowledge limits their performances.

Learning a healthy generation could be an effective way to exploit domain
structure prior. Given a diseased image, if we know how its healthy version
behaves we can localize the abnormal regions easily by the difference between
the original and its healthy version. Thus such prior provides a more direct and
credible way to localize abnormalities from a full mammogram. AnoGAN [13]
applies such thought to anomaly detection. However, training with only healthy
images restricts its effectiveness in our application. Fixed-Point GAN [14] and
CycleGAN [19] can be used for the healthy generation based on the cycle consis-
tency mechanism. An intuitive idea of applying to our application is to regard
unhealthy images as a domain and healthy images as another domain. However,
such approaches have two major limitations. First, we need to know which images
are healthy. Moreover, healthy patterns in mammograms can be various and even
similar to the lesions in some cases as shown in Fig. 1. We want to generate a
healthy image that maintains all the healthy contents of the original. Regarding
healthy images as generation reference may lead to a diverse generation and may
conflict with our goal. Second, the cycle consistency mechanism assumes that the
translated data can be translated back to the original data [5,10] and leads to the
preservation of the original features, e.g., large objects and textures. However,
lesions in our application can appear anywhere and have diverse appearances.
It translates the healthy domain back to the original domain an ill-posed task.
Thus such methods will result in undesirable lesion removal in our application.

To address the first problem, we directly regard the contralateral as genera-
tion reference by making use of the mammogram bilateral symmetry prior. To
be clear, we call the image to be classified as the target, while the image of the
opposite side as the contralateral. Bilateral breasts from the same person have
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Fig. 2. The schematic overview of BR-GAN. Framework is based on CycleGAN [19]
but uses contralateral features as references and adds preserved features calculated in
Residual-Preserved Module to the back translation network. The generated features are
then fed into a Classification Module with target features. Finally the Classification
Module outputs labels of benign/malignant.

a roughly symmetrical glandular pattern. Most lesions only appear on one side
and are invisible in the symmetrical regions of the opposite side. Therefore, the
contralateral can be an effective reference for generating the healthy version of
the target. Besides, a standard mammogram contains images from both sides.
Thus, no extra data is required. To tackle the second problem, i.e., ill-posed back
translation, we try to preserve the suspicious lesion information while translating
from the target data to its healthy version, and plus it when translating back.
Thus, the information fed to the back translation is supposed to be sufficient.

In this paper, we propose a novel model named Bilateral Residual Generating
Adversarial Network(BR-GAN) to improve mammogram malignancy classifica-
tion by making use of bilateral prior and healthy generation mechanism. First,
we propose a bilateral-cycle mechanism. We use contralateral images as refer-
ences instead of healthy images. Due to the bilateral misalignment problem, we
perform the generation in feature-level. Second, we propose a residual-preserved
mechanism for better preserving lesion information during translation. While
generating healthy features, we preserve the target-healthy residual features with
the attention mechanism. We constrain the preserved features and the target fea-
tures to share the same malignancy prediction by a residual embedding loss. In
the healthy/contralateral-target translation, the preserved features are also fed
into the translation network. Finally, we aggregate the generated features with
the target features for further classification. Experimental results on both the
public dataset and the in-house dataset demonstrate the proposed BR-GAN
achieves state-of-the-art performance.

2 Bilateral Residual Generating Adversarial Network

Figure 2 outlines the overall network architecture of our framework. We first
use contralateral features as references and generate the healthy version of the



660 C. Wang et al.

target features (Sect. 2.1). Then we feed both the target features and the residual
between the generated features and the target features into Classification Module
to predict labels (Sect. 2.2). We design our model in feature-level instead of pixel-
level due to the bilateral misalignment.

2.1 Feature Generation

Generated features are the healthy version of the target features. To achieve
feature generation, we propose a bilateral-cycle mechanism based on a Cycle-
GAN framework. Due to the limitation of the cycle mechanism, we design a
residual-preserved mechanism to provide lesion information for translation from
healthy to unhealthy.

Bilateral-Cycle Mechanism. The GAN loss can be defined as Eq. 1.

min
G

max
D

LG(G,D, ftarget,freference) := log (D (freference))

+ log (1 − D (G(ftarget))) ,
(1)

where freference is defined as the features of the reference used in discriminator
D and ftarget is defined as the features of the target image which needs to be
classified.

Most paired healthy breasts are roughly symmetrical and the abnormalities
are rarely symmetrical. Thus, contralateral features are appropriate references
for the healthy generation. We use contralateral features as references in our
basic Cycle-GAN framework. Generator GT2C tries to generate healthy features
fT
H that look similar to the contralateral features fC from the target features fT ,

while DC aims to distinguish between translated features fT
H and real features

fC . Generator GT2C is optimized by min
GT2C

max
DC

LGT2C (GT2C ,DC , f
T , fC), and

fT
H = GT2C(fT ). While generator GC2T tries to translate the generated healthy

features fT
H back to the target features fT and help fT

H maintain the target
features in lesion-free areas.

However, lesions in our application can appear anywhere and have multiple
shapes. Due to the limitation of the cycle consistency mechanism mentioned in
Sect. 1, the generated healthy features can not provide lesion information for
back translation. Thus it will be an ill-posed problem if we feed the generated
features fT

H into the generator GC2T directly. We propose a residual preserved
mechanism to tackle the problem.

Residual Preserved Mechanism. While we translate the target features to
its healthy version, we separate the suspicious lesion features i.e., the preserved
features fT

P from the target features in Residual Preserved Module. The preserved
features fT

P are used as the guidance to indicate the predicted lesion information.
Thus the preserved features fT

P should contain the texture and space informa-
tion of the lesions. Concatenation of the preserved features fT

P and the generated
features fT

H will be inputs to the generator GC2T , i.e. GC2T ([fT
H , fT

P ]). The pre-
served features fT

P will provide lesion features for a back translation and avoid
the ill-posed problem.
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To calculate the preserved features, we first calculate the residual between the
target features and the generated features. Second, to avoid the back translation
network GC2T being a direct identity mapping, we do not use residual as our
preserved features directly. We turn the residual features into an attention map
by softmax function for normalization. If the generated features learn to be the
healthy version of the target features, the locations on residual features with
high values should indicate high abnormal probabilities. Third, we multiply the
attention map and the target features. Finally, we get the preserved features fT

P

which is defined as:
fT
P = fT ∗ softmax(fT − fT

H) (2)

To further constrain the success of separation, we define a residual embedding
loss Eq. 3 and constrain the preserved features and the target features to share
the same malignancy prediction. We use the malignancy classifier to predict the
malignant probabilities pm(·) of the target features fT and the preserved features
fT
P .

LRE = −pm(fT ) ∗ log(pm(fT
P )) − (1 − pm(fT )) ∗ log(1 − pm(fT

P )). (3)

We design the residual cycle consistency loss LT
c measured by selected mean

square error(MSE) to achieve fT → GT2C(fT ) → GC2T ([GT2C(fT ), fT
P ]) ≈ fT .

However, with only one residual cycle consistency constrain may lead to a
collapsed identical mapping from contralateral features. To avoid this problem,
we design another cycle consistency loss LC

c . LC
c also is measured by MSE and

achieves i.e., fC → GC2T ([fC , fT
P ]) → GT2C(GC2T ([fC , fT

P ])) ≈ fC . And the
generator GC2T is optimized by min

GC2T
max
DT

LGC2T (GC2T ,DT , f
C , fT ), while DT

aims to distinguish between translated features GC2T ([fC , fT
P ]) and real target

features fT .

2.2 Classification

From the feature generation procedure, we obtain the healthy features fT
H of the

target image xT . The healthy features fT
H and the target features fT are fed into

Classification Module for final classification. In the module, we first calculate the
residual between the generated features fT

H and the original target features fT .
Then concatenation of the residual and the original target features fT which con-
tain global semantic information is used to predict benign-malignant labels. We
use the cross-entropy loss as loss function LCLS for mammogram classification.

During training, we optimize both feature generation and classification mod-
ules jointly as in Eq. 4.

L = LRE + LCLS + min
GT2C

max
DC

LGT2C (GT2C ,DC , f
T , fC)

+ min
GC2T

max
DT

LGC2T (GC2T ,DT , f
C , fT ) + LT

c + LC
c

(4)
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3 Experiments

3.1 Experimental Settings

Datasets. We evaluate BR-GAN on a public INBreast dataset [9] and an in-
house dataset. INBreast [9] has 115 cases and 410 mammograms and provides
each image a BI-RADS result as image-wise ground truth. We use the same
process as Zhu et al. [20] (malignant if BI-RADS > 3; benign otherwise). For a
fair comparison, our settings are all the same as Zhu et al. [20] for mass classi-
fication on the INBreast [9]. However, we discard 9 images for the lack of con-
tralateral images and the remainings all have contralateral images. In addition,
we also attempt mixed-lesion classification including mass, calcification cluster
and distortion for the purpose of generalization. The in-house dataset contains
1303 images with malignancy annotations, including 589 only masses,120 only
suspicious calcifications,34 only architectural distortions, 197 only asymmetries
and 363 multiple lesions from 642 patients. All these 1303 images have opposite
sides, i.e. 1303 pairs. We randomly divide the dataset into training, validation
and testing sets as 8:1:1 in patient-wise.

Implementation Details. We use Otsus method [11] to segment the breast
regions and remove backgrounds from the original images in 14-bit DICOM
format. We implement all models with PyTorch and use Adam optimization.
Both target and contralateral features are extracted from the last convolution
layer. We use Area Under the Curve (AUC) as evaluation metrics in image-wise.

3.2 Performances

Mass Classification. The first four lines in Table 1 summarize the results of
the representative methods. To be fair, we compare the results with the back-
bone of AlexNet [6] and ResNet50 [4] separately. Due to the slight difference
of images caused by reference absence, for a fair comparison, we re-implement
some representative methods for mammogram classification [20], natural image
classification [2,18] and healthy generation [13,14,19] by adjusting the source
codes given by the authors. We marked these methods by ‘*’ in the table.

Mix-Lesion Classification. The performances are shown in the last two
columns of Table 1 for the INBreast dataset and the in-house dataset.

Results. Attention mechanism (Zhu [20], CAM [18], ABN [2]) works but lim-
its by the lack of mammogram domain knowledge. Only using healthy data for
training highly (AnoGAN [13]) relies on the number of healthy data and is lim-
ited by the lack of reference to unhealthy data. The cycle consistency mechanism
(Fixed-Point GAN [14], CycleGAN [19]) is effective to some extent but is lim-
ited by its ill-posed back translation problem in our application. However, our
BR-GAN outperforms the representative methods significantly on both datasets.

To further evaluate the effectiveness of the generated features(healthy version
of the target features), we calculate the mean FID [3] to measure the average of
features distribution distances in the INBreast dataset. The mean FID between
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Table 1. AUC evaluation on (a) INBreast for mass classification with Alexnet; (b)
INBreast for mass classification with Resnet50; (c) INBreast for mixed-lesion classifi-
cation with Resnet50; (d) in-house dataset for mixed-lesion classification with Alexnet.

Methodology AUC (a) AUC (b) AUC (c) AUC (d)

Pretrained CNN [1] 0.690 − − −
Pretrained CNN+RF [1] 0.760 − − −
Vanilla AlexNet, Zhu et al. [20] 0.790 − − −
Zhu et al. [20] 0.890 − − −
Vanilla* 0.820 0.827 0.780 0.697

AnoGAN [13]* 0.803 0.796 0.774 0.720

Fixed-Point GAN [14]* 0.835 0.837 0.805 0.734

CycleGAN [19]* 0.852 0.838 0.808 0.741

Zhu et al. [20]* 0.860 0.862 0.830 0.720

Vanilla*+GAP [18]* 0.857 0.827 0.780 0.718

Vanilla*+ABN [2]* 0.858 0.846 0.814 0.723

Proposed Method 0.900 0.886 0.860 0.770

Table 2. Top-1 localization error on (b) INBreast dataset for mass classification with
Resnet50; (d) INBreast dataset for mixed-lesion classification with Resnet50.

Methodology Top-1 error (b) Top-1 error (d)

ResNet50 [4] 0.635 0.727

AnoGAN [13]* 0.684 0.789

Fixed-Point GAN [14]* 0.646 0.737

CycleGAN [19]* 0.632 0.667

ABN [2] 0.632 0.722

Zhu et al. [20]* 0.627 0.625

Proposed Method 0.519 0.544

the target and contralateral features is 63.63. The generated-contralateral mean
FID is 27.54. The target-generated mean FID is 22.81 while the one after remov-
ing the lesion areas from ground truth is 0.73. Through the above comparison,
we can find the generated features containing both contralateral distribution and
target information in healthy areas as we want.

Localization. To verify whether the proposed model focuses on the lesion areas,
we evaluate the localization error by CAM [18]. We use the top-1 localization
error as ILSVRC using an inter-over-union (IOU) threshold of 0.1. As is shown
in Table 2, BR-GAN largely outperforms the representative methods.

Furthermore, Fig. 3 visualizes the class activation maps of some cases. As
we can see, all lesions satisfy the bilateral asymmetry prior. The proposed
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Fig. 3. Visualization of class activation maps of Vanilla CNN, AnoGAN [13], Fixed-
Point GAN [14], CycleGAN [19], Zhu et al. [20], ABN [2] and our BR-GAN. The target
containing lesions is bounded by a red rectangle. The ground truth bounding boxes are
labeled by green rectangles in the third column. (Color figure online)

BR-GAN succeeds to focus on all lesions since it incorporates the bilateral asym-
metry prior and modifies the cycle mechanism. The other methods show uneven
results without considering bilateral information.

3.3 Ablation Experiments

To verify the effectiveness of each component, we evaluate some variant models
and show results in Table 3. Here are some interpretation for the variants:

SBF: Simple Bilateral Features. The bilateral features are combined and fed
into the fusion layer directly;

Single: Only use the consistency loss LT
c ;

Double: Use both consistency losses LT
c and LC

c ;
Mask: Whether use attention mask in Residual Preserved Module.
Note that bilateral breasts exist misalignment, using SBF to classify is not

robust enough. As shown in the above tables, the bilateral cycle mechanism, the
double consistency losses, the residual preserved mechanism and attention mask
for preserved features are all proved to be effective.
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Table 3. Ablation experiments on (a) INBreast dataset for mass classification with
AlexNet; (b) INBreast dataset for mass classification with ResNet50; (c) INBreast
dataset for mixed-lesion classification with ResNet50; (d) in-house dataset for mixed-
lesion classification with AlexNet.

Bilateral LC LRE Mask AUC (a) AUC (b) AUC (c) AUC (d)

× × × × 0.820 0.827 0.780 0.697

SBF × × × 0.862 0.858 0.807 0.721

GAN × × × 0.883 0.873 0.857 0.731

GAN Single × � 0.861 0.859 0.826 0.727

GAN Double × � 0.886 0.864 0.846 0.767

GAN Double � × 0.889 0.857 0.846 0.761

GAN Double � � 0.900 0.886 0.860 0.770

4 Conclusions

In this paper, we present a novel approach called bilateral residual generating
adversarial network (BR-GAN) to improve the mammogram classification per-
formance. The approach proposes a novel way to generate the healthy version
of target features to help find the abnormal features. Thus, BR-GAN enhances
the interpretability of results for clinical diagnosis. Experimental results indicate
that the proposed BR-GAN achieves the state-of-the-art in both the public and
the in-house dataset.
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